題目敘述
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a value (int)
and a list (List[Node])
of its neighbors.
class Node {
public int val;
public List<Node> neighbors;
}
Test case format:
For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1
, the second node with val == 2
, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1
. You must return the copy of the given node as a reference to the cloned graph.
Example 1.
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2.
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3.
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
限制:
The number of nodes in the graph is in the range [0, 100].
1 <= Node.val <= 100
Node.val is unique for each node.
There are no repeated edges and no self-loops in the graph.
The Graph is connected and all nodes can be visited starting from the given node.
解題思路:
因為他的目的是深拷貝一個 graph,所以需要做到的每一個 node 都是新的。另外因為需要知道新的 node 所對照的 node 所以要用一個 hash map 把它存起來。
另外在複製的時候,我們選擇使用 Depth Firth Search 的方式(也就是先一路走到最底的 node,之後在處理同一層的 node)。從第一個點開始進行複製,在複製第一個點的時候,我們就會需要處理他的 neighbor node,此時因為他的 neighbor node 也還沒建立,所以就會利用遞迴的方式依序建立起所以有的 node,並且把他指派為 neighbor,這樣依序建立起 HashMap 裡面缺乏的 node 到最後全部建立完成也就完成 graph 的深拷貝。
例如: node1 會建立 node2 和 node4(因為 HashMap 裡面沒有)並存到 HashMap 裏面,同時第二 node 會需要 node1 和 node3,而這時因為 HashMap 裡面已經有 node1 所以只需要建立 node3,依此類推直到每個點都建立完畢就會完成整個 graph 的深拷貝。
解題步驟:
- 宣告 HashMap
- 複製 head node
- 因為 head node 不存在 HashMap 當中,所以複製 head node 並存在 HashMap 當中
- 在創造 head node 的 neighbors 的同時,利用遞迴的方式建立其他的 node。
Java 解法
class Solution {
private HashMap<Integer, Node> oldToNewMap;
public Node cloneGraph(Node node) {
if (node == null) return node;
// Declare a hashmap that stores the connection between old and new node.
this.oldToNewMap = new HashMap<Integer, Node>();
return this.cloneWithDfs(node);
}
public Node cloneWithDfs(Node node) {
// if the new node is already stored in the hashmap, return the new node
if (this.oldToNewMap.containsKey(node.val)) {
return this.oldToNewMap.get(node.val);
}
// if not created, create a copy of the original node
Node copy = new Node(node.val);
oldToNewMap.put(node.val, copy);
// build the neighbors of the new node
for (Node neighbor: node.neighbors) {
copy.neighbors.add(this.cloneWithDfs(neighbor));
}
return copy;
}
}
Complexity
- Time Complexity: O(n);
- Space Complexity: O(n);